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TABLE I. Combinations of elastic constants governing pure mode propagation in cubic crystals. 

Propagation Particle 
direction motion 

[100J [l00J 
[110J [lIOJ 
[l00J .L to [l00J 
[110J [110J 
[110J [OOlJ 
[111J [111J 
[111J .L to [l11J 

and Ruoff8 assumed a. linear variation of 11 vs P as 
described below. We note that 

(14) 

Beginning with Eq. (9) and substituting for BS and 
p from (12) and (14), we obtain 

I1(P) 

Tf32( [L12(P= 0) / 7} (P) J-![~2( P= 0) / T 22 ( P) JJ 
VC p 

Next express I1(P) as a power-series expression. 

11 (P) = 110+110' P+ 110" (P/ 2) + .. ' . 

(15) 

(16) 

Elastic 
Type constants 

Longitudinal Cll 

Shear (Cu -C.2)/ 2 
Shear C.U 

Longitudinal (Cll+C.2+2C .. ) / 2 
Shear C« 
Longitudinal (Cu +2C12 +4C .. ) /3 
Shear (Cu -C.2+C«) / 3 

The logarithmic derivative of 11 as given by (15) yields 

. (al1) 2 (af3 ) 2 (ax. ) 
11- ' ap 1'= ~ ap T - ~ ap T 

_ ( L12(P=0 ) _ ~ L22(P=0))- 1 ~ 
T12 (P) 3 T22(P) ap 

X ( L12(P=0 ) _ ~ Li(P=O)) -Cp-l (acp) (17) 
T12(P) 3 T22(P) T ap T' 

We now proceed to evaluate (a l1/aPh as P-)O, i e., 
110'. From Eq. (6) we have 

(18) 

TABLE II. Internal consistency of the adiabatic elastic constant values (in units of 10" dyn/ cm2) of RbCl, RbBr, and RbI as a function 
of temperature (OK) at 1 atm. 

CII Cl2 C .. 

Temperature (I) " (2) b (1)' (2) b (1) • (2)b 

III RbI 
300 2.5570 2.5561 0.3766 0.3815 0.2772 0.2777 
260 2.6496 2.6519 0.3675 0.3641 0.2792 0.2799 
220 2.7490 2.7474 0.3514 0.3506 0.2818 0.2810 
180 2.8504 2.8502 0.3354 0.3352 0.2840 0.2844 

I RbCI 
300 3.6213 3.6242 0.6154 0.6124 0.4668 0.4678 
260 3.7486 3.7519 0.6070 0.6034 0.4713 0.4714 
220 3.8756 3.8831 0.5934 0.5899 0.4754 0.4754 
180 4.0011 4.0071 0.5753 0.5745 0.4789 0.4794 

II RbBr 
300 3.1513 3.1522 0.4995 0.5000 0.3798 0.3801 
260 3.2570 3.2624 0.4825 0.4860 0.3831 0.3834 
220 3.3691 3.3727 0.4714 0.4731 0.3863 0.3866 
180 3.4882 3.4882 0.4587 0.4593 0.3898 0.3900 

a From the experimental runf' at higher pressures as a function of tem~ b From the experimental runs at one atmosphere as a function of tem· 
perature. perature. 
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TABLE III. Adiabatic elastic constants (in units of lOll dyn/cm2) and density (in units of g/cm3) of RbCl as a function of temperature 
(OK) as obtained in present work (PW) and those obtained by Marshall, Pederson, and Dorris (MPD). 

Cll Cu CM Bulk modulus Density 

Temp. PW MPD PW MPD PW 

300 3.6242 3.653 0.6124 0.645 0.4678 
280 3.6894 0.6053 0.4695 
260 3.7519 0.6034 0.4714 
240 3.8189 3.840 0.5959 0.666 0.4735 
220 3.8831 0.5899 0.4754 

200 3.9448 0.5812 0.4775 
180 4.0071 4.025 0.5745 0.676 0.4794 
160 4.0681 0.5630 0.4813 
140 4.1194 0.5569 0.4831 
120 4.1792 4.206 0.5516 0.676 0'.4848 

100 4.2394 4.266 0.5484 0.676 0.4858 

We also have the following thermodynamic relation: 

(a{3/ aPh= -[(a/ aT) (1 / BT)Jp. (19) 

This is true at all pressures, but in the limit we have 

lim(a{3/ aPh= (1 / BoT2) (aBT/ aT)p=o. (20) 

Likewise 

(acp/ aPh= - T[ (a2/ ap) (l / p) Jp 
= - (T/ p) [(a{3/ aT)p+{32]. (21) 

Again at the limit we have 

lim (acp/ aPh= - (T! Po) [(af3/aT)p=o+f302]. (22) 

Therefore all the tem1S on the right-hand side of Eq. 
(17) are known in the limit as P-tO if we have sufficient 
thermal expansion and specific-heat data as a function 
of temperature at zero pressure to combine with the 
direct experimental values which we measure and which 
give the second and third terms. Thus we can evaluate 
/::'0" Hence we have 

TABLE IV. Temperature derivatives of the adiabatic elastic con
stants (in units of 107 dyn/ cm2 OK) of RbCl at room temperature. 

Temper-
ature Bulk 
(OK) CII CI2 CM modulus 

Present 300 -30.80 3.40 - 0.934 -8. 00 
work 

Haussuhl 295 -32.12 3.46 -1.094 -8.40 
Marshall 300 -31.10 -3.50 -0.667 -12.7 

et al. 

MPD PW MPD PW MPD II 

0.478 1.616 1.647 2.7969 2.7972 0.0533 
1.633 2.8033 0.0502 
1.653 2.8097 0.0471 

0.482 1.670 1.724 2.8160 2.8163 0.0437 
1.688 2.8223 0.0403 

1.702 2.8285 0.0367 
0.486 1. 719 1.792 2.8346 2.8345 0.0331 

1.731 2.8404 0.0293 
1. 744 2.8458 0.0254 

0.490 1.761 1.852 2.8504 2.8507 0.0214 

0.491 1.779 1.873 2.8538 0.0172 

which is then substituted into Eq. (13). Thus we can 
evaluate A from (13) and then we get all the pertinent 
elastic constants. (Note that one does not have to have 
approximate values of (aBos/ aPh to carry out this 
analysis.) Combinations of elastic constants for pure
mode propagation in cubic crystals are given in Table 1. 
In the following sections the elastic constants of RbCI, 
RbBr, and RbI as a function first of temperature at 
one atmosphere and then of pressure at several tem
peratures are discussed. The values presented are (i) 
based on the travel times evaluated at the resonant 
frequency of quartz at a pressure P and tempera
ture T. (ii) They are the least-square estimates ob
tained from four p(P)v(P) values, and (iii) they are 
in ternally self-consistent. As an example of self-con
sistency we present the values of the elastic constants 
of RbCl, RbBr, and RbI as a function of temperature 
at one atmosphere in Table II. The two values of 
each constant at a temperature are obtained from two 
independent experimental runs as indicated under
neath Table II. The agreement between these pairs 
of values are within the range of experimental errors. 
These errors are estimated to be 0.2%, 0.6%, and 0.4% 
for Cn, C12, and C44 , respectively, for each of the 
rubidium halides. The errors associated with these 
values of the elastic constants incorporate not only 
the usual errors of measurements like length of the 
specimens, absolute null frequency and its reproduci
bility, and misorientation, but also the statistical or 
random errors due to replication. The associated errors 
are thus larger in magnitude than the precision with 
which each experimental run could be executed. Where 
some pertinent ancillary data were not available, 
specific assumptions had to be made. These assump
tions are explicitly described in the separate sections 
dealing with the halides to which they specifically 


